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Bejo Dukaa, Carlo Ferrariob, Arianna Passerinic,∗, Stefano Pivac

aDepartment of Physics, Faculty of Sciences, University of Tirana, Bulevardi Zogu I, Tirana, Albania
bDipartimento di Fisica e Sezione INFN, Universitá di Ferrara, via Saragat, 1, I-44100 Ferrara, Italy

cDipartimento di Ingegneria, Universitá di Ferrara, via Saragat, 1, I-44100 Ferrara, Italy

Received 19 April 2007; received in revised form 28 May 2007; accepted 30 May 2007

Abstract

Two different problems are proposed as approximations of the usual system modelling natural convection under the Oberbeck–Boussinesq
assumptions. The error is evaluated by means of the norm of its gradient in the Hilbert space. The average Nusselt number is also estimated.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection heat transfer in horizontal coaxial cylin-
ders with uniform temperature boundary conditions on the inner
and outer surfaces, respectively, has gained considerable atten-
tion owing to its wide applications (solar concentrators, energy
storage systems, cooling systems in nuclear reactors, electrical
gas insulated transmission lines etc.).

A comprehensive review covering available experimental
data, numerical results, mathematical models and correla-
tions for heat transfer in a horizontal circular annulus has
been presented by Teerstra and Yovanovich [1], whose anal-
ysis is in terms of the average Nusselt number, expressed
as a function of the Rayleigh number Ra and of the aspect
ratio R2/R1.

The average heat transfer rate in the annulus shows two lim-
iting cases connected by an intermediate transition region. For
small values of Ra or of R2/R1, the average Nusselt number
shows a strong dependence on R2/R1, while it is approxi-
mately independent of Ra; this behaviour is termed conduc-
tive. At large Ra and large R2/R1 boundary layer behaviour
occurs. In this region the average Nusselt number shows a
strong dependence on Ra but a somewhat weaker dependence
on R2/R1.
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The flow patterns observed in the horizontal circular annu-
lus have been classified by Powe et al. [2]. They found four
basic types of flow, depending upon Ra and the inverse rela-
tive gap width A= 2R1/(R2 − R1). For sufficiently small Ra

and for any A, the flow observed is a steady 2-D one, with
two crescent-shaped eddies which are symmetric with respect
to the vertical plane through the common axis of the cylinders.
As Ra increases above a critical value, different unsteady flow
patterns were observed: 2-D oscillatory flow for A< 2.8 (wide
gap), 3-D spiral flow for 2.8 <A< 8.5, 2-D multi-cellular flow
for A> 8.5 (narrow gap).

More recently, the flow pattern analysis has been examined
closely by other authors, typically byYoo [3] with his connected
references.Yoo reports that if Ra is greater than a certain critical
value, dual steady solutions are realized in the flow regime in
which Powe [2] asserts that a steady 2-D flow prevails. One so-
lution corresponds to the commonly observed crescent-shaped
pattern in which the fluid ascends along the central plane when
the inner cylinder is kept hotter, and the other is a flow consist-
ing of two counter-rotating eddies and their mirror images.

This corresponds to a first transition with exchange of stabil-
ity, from the basic shear driven upward flow, which for Ra > 0
is not the rest state but is steady, to a buoyancy driven down-
ward flow, steady as well.

In this flow pattern analysis, all Authors agree on the assertion
that for sufficiently small Ra, and independently of A, the
steady unicellular crescent-shaped eddies occur.
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Fig. 1. � is the counterclockwise angle from the horizontal x-axis, r the radial
distance from the origin and z the vertical axis. The boundary conditions on
the temperature are: T (R1,�) = T1 and T (R2,�) = T2 < T1.

It is exactly in this region that we analyze some mathematical
models for natural convection in horizontal annuli from the
theoretical point of view. We pay particular attention to the
contribution to the heat transfer given by the motion, since as
we have just mentioned the fluid moves for any difference of
temperature �T = (T1 − T2) > 0, no matter how small. This
means that all the mathematical models describe the situation
as follows: if one substitutes velocity v = 0 in the equations of
motion, then it is not possible to solve the system of equations
with a corresponding temperature field T.

By considering the region in which stable basic steady flows
occur, in [5] it can be seen how the linear Stokes-like system,
previously studied in [6], works as approximation of the ba-
sic conservation laws under the Oberbeck Boussinesq simpli-
fication. However, still in [5] it is proved that by using such a
model, although there is fluid motion, the heat transfer is the
same as for conduction.

The present paper deals with the validity of the non-linear
Stokes problem [7] and of another almost linear system (which
we call uncoupled problem) as approximations of the full sys-
tem of equations.

To derive them, a scheme of the physical system under ex-
amination is shown in Fig. 1. Our 2D-domain is endowed with
a reference frame with x- and z-axis, and polar coordinates are
chosen as in the picture. Accordingly, e3 = k = ∇(r sin �) =
sin �er + cos �e�.

As usual, the basic conservation laws for a Newtonian fluid
are used. Next, the equations are simplified by means of the
Oberbeck–Boussinesq approximation, whose proper assump-
tions are still the subject of discussion [8,9]. Further, the un-
known � = T − T ∗, where

T ∗ = T1 + �T

ln R2 − ln R1
(ln R1 − ln r)

with �T = T1 − T2, is introduced to get homogeneous bound-
ary conditions in the energy equation. Notice that T ∗ is the
temperature field driven by pure conduction.

The steady version of the full system is then

∇ · v = 0, (1.1)

1

Pr
v · ∇v = − ∇� + �v + Ra

b
sin � er + Ra�∇(r sin �),

(1.2)

v · ∇� − vr

rb
= ��, (1.3)

where b := ln(R2/R1) = ln(1 + 2/A). Boundary conditions
are appended to the system

vr(A/2, �) = 0, v�(A/2, �) = 0,

vr(A/2 + 1, �) = 0, v�(A/2 + 1, �) = 0,

�(A/2, �) = 0, �(A/2 + 1, �) = 0.

Moreover, all the functions must be periodic with respect to �,
otherwise the solution does not physically make sense.

Length, time and temperature used herein are dimensionless,
being related to the real variables by the equations

t = �

�2 t ′, r = r ′

�
, z = z′

�
, � = �′

�T
,

where the reference length � is R2 − R1 and � is the thermal
diffusivity.

With such units, the domain is

�A := {(r, �) ∈ R2: r ∈ (A/2, 1 + A/2), � ∈ (−	, +	)}.
By denoting g as the gravitational acceleration, 
 the kinematic
viscosity and � the volumetric expansion coefficient, the Prandtl
and Rayleigh numbers in Eq. (1.2) are

Pr = 


�
, Ra = �g�T �3


�
.

We make here some remarks about the notation. In the present
paper boldfaced small letters always stand for vectors and
vector-valued functions. As happens in fluid dynamics, by u ·
∇w we mean uj�j w. We indicate by using the same symbol
‖ · ‖q the Lq -norm of scalar-, vector- and tensor-valued func-
tions. If the subscript q is not present, we mean the norm in
the Hilbert space.

Several simplified versions of problem (1.1)–(1.3) can be
considered and discussed in terms of the three dimensionless
parameters: Ra, A and Pr. The system can in principle be
simplified by neglecting the first or both the non-linear terms
v ·∇v and v ·∇�. If both are neglected, the result is the Stokes-
like problem, addressed in [5].

On the other hand, a very used approximation of (1.1)–(1.3),
see for example [7], is the non-linear Stokes problem obtained
by neglecting v · ∇v, but retaining v · ∇�. Although the truly
linear Stokes-like problem could sometimes be used for com-
putations [6], in the present paper it is shown that the almost
linear one works in a larger region of parameter space.

The non-linear Stokes problem is the following:

∇ · v0 = 0, (1.4)

0 = −∇�0 + �v0 + Ra

b
sin �er + Ra�0∇(r sin �), (1.5)

v0 · ∇�0 − vr
0

rb
= ��0. (1.6)
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In Section 2, we prove that it can be thought as a good approx-
imation of (1.1)–(1.3): (a) for fixed Pr and A, as Ra goes to
0, (b) for fixed Ra and A, as Pr goes to infinity.

In more detail: the velocity and temperature fields which
are solutions of (1.1)–(1.3) and (1.4)–(1.6), and the difference
between such solutions, are of the order of f1(A)Ra b−1 for
the solutions, and f2(A)Ra2 b−2Pr−1 for their differences
(f1 and f2 are continuous functions). The Dirichlet norm
of the difference identifies the absolute error. Thus, it is
expected that the relative error tends to 0 in both cases (a)
and (b).

Furthermore, in the present paper the estimates given in [5]
are refined for A close to 0, by obtaining a wider interval for
the parameter Ra.

Next, another simplified problem is introduced: the one in
which not only the convective term but also the coupling term
Ra�∇(r sin �) are neglected in the momentum equation (1.1)

∇ · v0 = 0, (1.7)

0 = −∇�0 + �v0 + Ra

b
sin � er , (1.8)

v0 · ∇�0 − vr
0

rb
= ��0. (1.9)

We show that such an uncoupled problem is also a good
approximation of the full problem for small Ra/b, with fixed
Pr and A. But it does not work for large Pr with fixed Ra and
A, because the difference between (1.1)–(1.3) and (1.7)–(1.9)
does not depend on Pr−1 as a factor.

The solution of (1.7)–(1.9) necessarily exhibits non-trivial
symmetry features, which are approximately verified also by
numerical solutions known in the literature [6]. We are referring
to the case of symmetry under reflection with respect to the
horizontal axis, which is approximately verified by numerical
solutions of the complete problem for small Ra.

A further remarkable mathematical property of (1.7)–(1.9) is
that unlike (1.1)–(1.3) and (1.4)–(1.6), the existence of solutions
can immediately be proved without any restriction on the size
of Ra.

Finally, in Section 3 we give estimates of the average Nusselt
number

Nu�(T ) = �

�T A

∫
A

∇T · n dA, (1.10)

where A can be the inner or the outer surface. In the systems
(1.4)–(1.6) and (1.7)–(1.9), we have T = T ∗ + �0 and conse-
quently, by choosing A as the outer surface

Nu�(T ) = 1

b(1 + A/2)
+ Nu�(�0).

The quantity Nu�(�0) measures the heat transfer due to
the flows described by means of solutions of (1.4)–(1.6) or
(1.7)–(1.9).

In order to be fully appropriate, an approximation should
only cause small errors in the average Nusselt number. Then,

if compared with the linear Stokes problem, the problems stud-
ied herein have the following different features: on one hand,
they can be used as approximations in a larger region of the
space of dimensionless parameters, and on the other hand the
quantity Nu�(�0) is different from 0.

Therefore by considering both the simplified systems, the
estimates of Nu�(�) − Nu�(�0) (where � solves the full prob-
lem) are derived, and the absolute error is even smaller than
for velocity and temperature.

2. Non-linear approximations: a theoretical justification

If steady solutions of problem (1.1)–(1.3) are looked for, it
can be seen in [5] that a numerical bound for their norms (the
so-called a priori estimates, needed to get existence theorems)
is found only through restrictions on the Rayleigh number.
Since they are only sufficient conditions, the domain of exis-
tence for steady solutions could be larger. In any case, we can
provide for such values of Ra the approximations (1.4)–(1.6)
and (1.7)–(1.9).

Furthermore, unlike as in [5], the approach of the present
paper deserves specific attention to be paid also to the range
of small A, so that the restrictions on Ra can considerably be
weakened in this range.

To this end, two general estimates for the Poincaré constant
are compared: the one given in [5]

kl
p = 1

2

√
1 + 2

A
, (2.1)

and the traditional one

ks
p = 1 + A/2, (2.2)

which can be found for instance in [10]. As can immediately be
seen, the second expression is more suitable for A< (

√
2−1),

while the first one is better for large A.
Of course, the optimal value of kp (which is (−�0)

−1/2, with
�0 the largest eigenvalue of the Laplacian for scalar functions,
and of the Stokes operator for divergence free vector fields)
could be found for any �A, but only through a numerical
analysis which would exclude general evaluations.

In what follows, the bounds of some norms of the solutions
are considered in Hilbert space. Thus, we just mention that
since the boundary is regular, it can be proved in a general
way that any solution of our problems is regular. In particular,
in order to find a solution of the three systems of equations
given in the introduction, we can apply the following standard
scheme: first an a priori bound is found for the norm of the
gradient of the unknown velocity and temperature fields, then
the existence of a so-called weak-solution can be proved, and
finally it follows that the solution is also bounded pointwise
and the norms in the space of the continuous functions should
fulfil analogous estimates. Moreover, the pressure field can a
posteriori be found. In the present paper any proof of existence
is omitted for the sake of brevity, since the main work consists in
writing and discussing the error estimates. In any case, existence
proofs can be found in [11].
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By considering the solutions of (1.1)–(1.3) and (1.4)–(1.6),
the following proposition can be written:

Proposition 1. Let us assume

�0 := 1 − 2(kl
p)4Ra

Ab
> 0, (2.3)

then any solution (v, �) of problem (1.1)–(1.3), and any
solution (v0, �0) of the non-linear Stokes problem (1.4)–(1.6)
corresponding to the same A and Ra, verify the same esti-
mates, which we write as follows

‖∇v‖, ‖∇v0‖�
√

	

(
1 + A

2

)
kl
pRa

b�0
, (2.4)

‖∇�‖, ‖∇�0‖�
√

	

(
1 + A

2

)
2(kl

p)3Ra

Ab2�0
. (2.5)

Moreover, if

�1 := 1 −
√

	

b
(ks

p)3Ra > 0, (2.6)

then the following estimates also hold

‖∇v‖, ‖∇v0‖�
√

	

(
1 + A

2

)
ks
pRa

b�1
, (2.7)

‖∇�‖, ‖∇�0‖�	

√
1 + A

2

(ks
p)2Ra√
b3�1

. (2.8)

Proof. The first part of the statement, with inequalities (2.4)
and (2.5), is identical to Proposition 1 in [5] and is proved there.

In the same way we prove inequalities (2.7) and (2.8). The
difference between the two parts of the statement all lies in the
manipulation of the energy equation. Precisely, in order to get
(2.7) and (2.8), after having multiplied (1.3) as well as (1.6) by
�, we must integrate over �A and use the estimate

1

b

∣∣∣∣
∫

vr

r
�
∣∣∣ �

√
	

b
ks
p‖∇�‖‖∇v‖, (2.9)

whose proof is shown in Appendix A. Hence, from (2.9) it can
be deduced that

‖∇�‖�
√

	

b
ks
p‖∇v‖. (2.10)

For small A, (2.10) is finer than

‖∇�‖�
2(kl

p)2

Ab
‖∇v‖,

which is the one from which the first part of the statement
follows. Conversely, this last is finer for A → ∞, since Ab

tends to 2 while b itself tends to 0. At the same time, condition
(2.6), which implies the second part of the statement, is less
restrictive for A close to 0.

Now, we can analyze the error in the approximation by writ-
ing estimates for the difference between solutions of the two
systems.

Thus, after having set


 =
√

	

(
1 + A

2

)
,

a proposition is given here summarizing the outcomes. Again,
the proof can be found in Appendix A.

Proposition 2. Let us fix Ra, Pr and A. Given a solution (v, �)
of problem (1.1)–(1.3) and a solution (v0, �0) of (1.4)–(1.6),
we set

v = (v − v0) + v0 := u + v0,

� = (� − �0) + �0 = � + �0. (2.11)

Then, if

�0 := �0 − (kl
p)2

b
√

2




�0
Ra

(
1

Pr
+ 1 − �0

)
> 0 (2.12)

the following estimates for the difference are verified:

‖∇u‖� 1

�0

(kl
p)3
2

√
2�2

0

1

Pr

Ra2

b2 ,

‖∇�‖� 1

�0

√
2(kl

p)5
2

Ab�2
0

(
1 + (kl

p)2Ra


b
√

2�0

)
1

Pr

Ra2

b2 , (2.13)

and if

�1 := �1 − (ks
p)2

b
√

2




�1
Ra

(
1

Pr
+ 1 − �1

)
> 0 (2.14)

the following estimates are verified:

‖∇u‖� 1

�1

(ks
p)3
2

√
2�2

1

1

Pr

Ra2

b2 ,

‖∇�‖� 1

�1

(ks
p)4
2

√
2�2

1

√
	

b

(
1 + (ks

p)2Ra
√
2b�1

)
1

Pr

Ra2

b2 . (2.15)

Conditions (2.12) and (2.14) are possible further smallness
conditions on Ra, with respect to (2.3) and (2.6). Therefore,
some remarks on their meaning should be done, while a de-
tailed discussion in terms of the parameters is just a matter of
elementary analysis.

Actually, (2.12) and (2.14) are needed to write the estimates
of the error, and hence are necessary to define the domain
where problem (1.4)–(1.6) is a good approximation of problem
(1.1)–(1.3). As can be immediately verified, the largest admis-
sible Ra for fixed Pr and A is smaller than that implied by
(2.3) and (2.6).
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In conclusion, by comparing the estimates of Proposition 2
with those of Proposition 1, it can be seen that for sufficiently
small Ra the error is of order Ra2 while the solution is of order
Ra. Also, the error goes to 0 as Pr goes to infinity while the
estimate of the solution does not depend on Pr.

Further, let us fix Pr and consider the estimates for A close
to 0. Since for small A it immediately follows that b is large,
conditions (2.6) and (2.14) provide as largest admissible Ra
a function of A which is non-uniformly bounded. Moreover,
estimates (2.7) and (2.8) can be read as depending on Ra/b,
while (2.15) can be read as depending on Ra2/b2. Therefore,
for small A and fixed Pr the order of the relative error can be
small even when Ra is not small. Thus, the region of parameter
space in which the approximation can be considered is larger
than in [5].

Finally, the decoupled problem (1.7)–(1.9) is analyzed. A
specific consequence of erasing the coupling term is that for all
Ra > 0, after having performed the scalar product of the mo-
mentum equation with v0, and after having applied Schwartz
and Poincaré inequalities, the norm of the gradient of the veloc-
ity can be estimated, so that no restrictions on the parameters
arise.

Another consequence is the symmetry of the velocity field
with respect to the horizontal axis. This is evident in the stream-
function formulation of the momentum equation, which for the
reference system given in Fig. 1 is

�2� = Ra
1

br
cos �,

where

vr
0 = −1

r

��

��
; v

�
0 = ��

�r
.

So, it follows that vr
0 and v

�
0 are, respectively, odd and even

functions with respect to �.
The system (1.7)–(1.9) and the error in the approximation

can be addressed by means of the same technique as used in
the proof of the previous statements. Therefore, the proof of
Proposition 3 is omitted.

Proposition 3. A solution of (1.7)–(1.9) always exists and is
bounded as follows:

‖∇v0‖� kp

b

Ra; ‖∇�0‖�

2k3
p

Ab2 
Ra. (2.16)

For the temperature excess, the estimate

‖∇�0‖�k2
p

√
	

b3 
Ra, (2.17)

can be used and kp can be both kl
p or ks

p. Then, we can say
that if

�0 := �0 − (kl
p)2

b
√

2

Ra

(
1

Pr
+ 1 − �0

)
> 0 (2.18)

the difference from the solution of the complete problem, defined
as in (1.7)–(1.9), is bounded as follows:

‖∇u‖�
(kl

p)3

�0



(

√
2Pr

+ 2(kl
p)2

A

)
Ra2

b2 , (2.19)

‖∇�‖� 1

�0

2(kl
p)5

Ab



(
(kl

p)2Ra


2
√

2
+ 1

)

×
(


√
2Pr

+ 2(kl
p)2

A

)
Ra2

b2 . (2.20)

Moreover, if

�1 := �1 − (ks
p)2

b
√

2

Ra

(
1

Pr
+ 1 − �1

)
> 0 (2.21)

the following also holds true

‖∇u‖�
(ks

p)3

�1



(

√

2bPr
+ ks

p

√
	

)
Ra2

b3 , (2.22)

‖∇�‖�
(ks

p)4

�1


√

	

(
(ks

p)2Ra


b
√

2
+ 1

)

×
(




b
√

2Pr
+ ks

p

√
	

b

)
Ra2

b3 . (2.23)

3. Estimates for the Nusselt number

Since we are working in 2-D, all the problems studied can
be rewritten by means of the stream function �. Thus, the
relationship with the solenoidal velocity fields is given by

vr
0 = −1

r

��

��
; v

�
0 = ��

�r
.

Once dimensionless variables are taken into account, to cal-
culate the Nusselt number averaged over the outer surface
(see (1.10) for the definition) we actually need to consider the
quantity

Nu�(�0) = 1

2	

∫ 	

−	

��0

�r
(1 + A/2, �) d�. (3.1)

If we want to evaluate such a quantity, the periodicity property
of the solution should be used: in fact, problems (1.4)–(1.6) and
(1.7)–(1.9) can be faced by expressing their solutions in suitable
bases, and the angular dependence can always be written by
using a Fourier series. For instance, for � the eigenfunctions of
the bilaplacian with gradient vanishing on the boundary can be
chosen, and for �0 the eigenfunctions of the Laplacian which
also vanish on the boundary. Their dependence on � will be
always a combination of sin n� and cos n� with integer n.

Therefore, we can write

� = f1(r) + �(e)(r, �) + �(o)(r, �),

�0 = f2(r) + �(e)
0 (r, �) + �(o)

0 (r, �),

where (e) and (o) stand for even and odd, with respect to the
x-axis in Fig. 1.
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We have∫ 	

−	

��0

�r
(1 + A/2, �) d� = 2	f ′

2(1 + A/2).

We also know that since f2(A/2) = f2(1 + A/2) = 0, then
a value r∗ ∈ (A/2, 1 + A/2) of the radius exists such that
f ′

2(r
∗) = 0.

Further information can be obtained from the energy equation
which is

��0 = 1

br2

��

��
+ v0 · ∇�0. (3.2)

We integrate over � ∈ (−	, +	) all terms in (3.2). So, in
particular we obtain∫ 	

−	
��0 d� =

∫ 	

−	
�f2 d� = 2	(f ′′

2 + f ′
2/r),

∫ 	

−	

1

br2

��

��
d� = 0,

where the first result depends on the expression of the Laplacian
in polar coordinates, and the second is due to the derivative
with respect to �, which excludes the contribution of f1.

As a consequence, an ordinary differential equation for f2
can be derived from (3.2):

f ′′
2 + f ′

2/r = 1

2	

∫ 	

−	
v0 · ∇�0 d�,

which implies

1

r

d

dr
(rf ′

2(r)) = 1

2	

∫ 	

−	
v0 · ∇�0 d�.

Next, we can integrate over r ∈ (r∗, 1 + A/2) and obtain

2	(1 + A/2)f ′
2(1 + A/2)

=
∫ 1+A/2

r∗
r

(∫ 	

−	
v0 · ∇�0 d�

)
dr . (3.3)

Furthermore, since Eqs. (1.3), (1.6) and (1.9) have the same
structure, (3.3) holds true also by replacing �0 with � and v0
with v. Thus, if we write Nu�(�) − Nu�(�0), by adding and
subtracting v0 · ∇� inside the integral, it immediately follows
that the general estimate for the error is

|Nu�(�) − Nu�(�0)|� kp

2	(1 + A/2)

× (‖∇u‖‖∇�‖ + ‖∇v0‖‖∇�‖). (3.4)

Now, we can substitute in (3.4) the estimates obtained in the
previous section, so that the error is expressed in terms of Ra,
A or b, and Pr.

Then, we immediately see (the proof is left to the reader)
that if the approximation proposed for v and � is working for
large Pr the error in Nusselt number is small as well, while
if the approximation is working for small Ra the error is even
smaller.

Appendix A

Proof of (2.9). In this proof use will be made of Hölder’s
inequality concerning norms in Lp-spaces:∫

f1f2f3 �‖f1‖p1‖f2‖p2‖f3‖p3 with

p−1
1 + p−1

2 + p−1
3 = 1,

and of the embedding inequality for functions defined on
2-D domains (due to Ladyzenskaja, see [10] for a sketch of
the proof):

‖f ‖2
4 �2−1/2‖f ‖‖∇f ‖,

where, for the sake of simplicity, it is understood that the norms
without subscripts are in the Hilbert space.

In particular, we choose f1 = |v|, f2 = � and f3 = 1/r ,
with p1 = p2 = 4 and p3 = 2. Next, we apply Ladyzenskaja’s
inequality, and the chain of inequalities looks as follows:

∣∣∣∣
∫

vr

r
�

∣∣∣∣ �‖�‖4‖v‖4

(
2	
∫ 1+A/2

A/2

1

r2 r dr

)1/2

�
√

	b‖�‖1/2‖v‖1/2‖∇�‖1/2‖∇v‖1/2.

Finally, (3.8) can immediately be deduced by applying also the
Poincaré inequality. �

Proof of Proposition 2. The difference between the solution
of (1.1)–(1.3) and that of (1.4)–(1.6) solves the homogeneous
system:

∇ · u = 0, (A.1)

− �u + 1

Pr
(u · ∇u + u · ∇v0)

+ 1

Pr
(v0 · ∇u + v0 · ∇v0)

= −∇(� − �0) + Ra �∇(r sin �), (A.2)

−�� + u · ∇�0 + u · ∇� + v · ∇� = ur

br
. (A.3)

By repeating the procedure adopted in estimating the complete
solution, we multiply (A.1) by u, (A.2) by � and integrate, to
obtain

∫
|∇u|2 = 1

Pr

⎛
⎜⎜⎜⎜⎝−

∫
u · ∇v0 · u︸ ︷︷ ︸−

∫
v0 · ∇v0 · u︸ ︷︷ ︸

⎞
⎟⎟⎟⎟⎠

+ Ra
∫

�∇(r sin �) · u︸ ︷︷ ︸ , (A.4)

∫
|∇�|2 = −

∫
u · ∇�0�︸ ︷︷ ︸+

∫
ur

rb
�︸ ︷︷ ︸ . (A.5)
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Next, use will again be made of Hölder’s inequality and of the
embedding inequality for functions defined on 2-D domains.
Then, the estimates for the right-hand side of (A.4) are

−
∫

u · ∇v0 · u�
(∫

|∇v0|2
)1/2(∫

|u|4
)1/2

Schwartz
� ‖∇v0‖‖u‖2

4
Ladyzen

� 2−1/2‖∇v0‖‖u‖‖∇u‖
Poinc
� 2−1/2kp‖∇v0‖‖∇u‖2,

−
∫

v0 · ∇v0 · u

Hölder
� ‖∇v0‖2‖v0‖4‖u‖4

Ladyzen
� ‖∇v0‖22−1/2‖∇v0‖1/2

2 ‖v0‖1/2
2 ‖∇u‖1/2

2 ‖u‖1/2
2

Ponic
� 2−1/2‖∇v0‖‖∇v0‖1/2k

1/2
p

× ‖∇v0‖1/2‖∇u‖1/2k
1/2
p ‖∇u‖1/2

= 2−1/2kp‖∇v0‖2‖∇u‖,∫
�ez · u� |�|‖u‖�k2

p‖∇�‖‖∇u‖.

Those for (A.5) are

−
∫

u · ∇�0� � 2−1/2kp‖∇�‖‖∇u‖‖∇�0‖,

∫
ur

rb
��

2k2
p

Ab
‖∇u‖‖∇�‖.

All this can be summarized as follows:

‖∇u‖� kp

21/2Pr
(‖∇v0‖‖∇u‖ + ‖∇v0‖2) + k2

pRa‖∇�‖,

(A.6)

‖∇�‖� kp

21/2 ‖∇�0‖‖∇u‖ + 2k2
p

Ab
‖∇u‖. (A.7)

Here, if one had used (2.9) the second estimate could be
substituted by

‖∇�‖� kp

21/2 ‖∇�0‖‖∇u‖ +
√

	

b
kp‖∇u‖. (A.8)

Next, the estimates of Proposition 1 can be applied to the
solution (v0, �0) of the non-linear Stokes problem, and such
estimates substituted in (A.6) and (A.7) or (A.8). Finally, by
rearranging the terms in an elementary manner, the statement
of Proposition 2 follows. �
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